Hot Posts

TOC 4th sem (CSE) (QUESTION BANK)

Semester-4 th 

Branch-Computer Science & Engineering

Subject-Theory of Computation 

(NOTE: For getting better view open this tab as a desktop site )

UNIT-1

1)  Design a DFA

i)                L={x ϵ {a,b}* : |x| =  odd and |x|  b =  even}

ii)              L={x ϵ {0,1}* : x does not contain more than three 0’s}

2)      If language L is accepted by NFA then there exits an equivalent DFA that accepts  the same language.Explain with example.


3)    Convert the following Mealy machines into equivalent Moore machine

4)      Define Following

i)    Finite State Machine  

ii)    Non Deterministic Finite Automata.

5)     Construct a  DFA over {0, 1 } that accept even number of 0's and odd number of  1's.

6)   Design  a  Mealy machine to determine  residue mod 3 for each binary string  treated as binary integer.

7)      Construct a DFA to accept the language over {0, 1} to accept a string 1100 or 1010 only.

8)      Convert  the NFA with  ϵ - transition to NFA without  ϵ - transition. 


9)    Convert the NFA given in following figure to its equivalent DFA



10)    Convert the Mealy machine given in following table to an equivalent Moore                  machine.

11)    Design DFA's for the languages over {0, 1) such that :

              i) Every string WEL, W ends with 1 if it starts with 0 and ends 0 if it starts                          with L

              ii) All strings ending in 0l or 10.

12)    Consider the Moore machine described by the transition table. Construct                      the corresponding Mealy machine.

13)   Design a Moore machine to determine residue mod 3 for each binary string  treated as binary integer.

14)   Design Moore machine for binary input sequence, if it ends in '101', output is A  if it ends in '110' output is ‘B’ otherwise 'C'.

15)   Construct a deterministic finite automation equivalent to

 M =({q0, q1, q2,q3}, {0,1}, δ,q0,{q3}) where δ is defined as - 

13)   Design a DFA -



i)    L={x  ϵ { a,b,c}* : |x|  a =  0 mod 2

ii)  L = {x  ϵ {0 , l}* / second symbol of x is 0 and  fourth is 1 }

14)   Give the DFA accepting the following languages over alphabet {0, l}



i)          The set of all strings ending with "00". 

                            ii)     
The set of all strings those containing the substring "000". 

UNIT 2

1)               Construct the regular expression for the following DFA.

2)               Construct FA equivalent to Regular expression  (0 + 1)* (00 + 11) (0 + 1)*. 

3)         Construct RLG and LLG.(Right linear grammar and Left linear grammar)

                i)     (0+1)*00 (0+1)*

                ii)    (0+1)*00 (0+1)


4)                Show that the following language is not  regular using pumping lemma 

             r = {ww R   | w  ϵ { a,b}}

5)                Construct a regular expression for the state diagram described by:

6)                Describe following sets by regular expressions:

            i)Set of all strings of 0's and l's ending with '00' . 

            ii) Set of all strings of 0's and l's starting with 0 and ending with '1

7)        Find the left linear and right linear grammar for (0+l)*00(0+1)*.

8)        Find the regular expression corresponding to following figure:

9)   
Construct the deterministic finite automation equivalent to the regular expression.           (0+l)* (00+11) (0+1)

10)    Construct a regular grammar G generating the regular set represented by the                  regular expression a*b(a+b)*.

11)    Convert the following RLG into equivalent LLG
            
12)    Write a regular expression to denote a language L over Ʃ= {0, l}* such that each           of string does not contain '100’ as substring.

13)    Find regular expression for given FA.


14)           Construct RLG & LLG for -

i)                (0+         l)*00(0+ 1)

ii)              L={0 n   1 m   /  n > 0 & m > 1}

15)           Using pumping lemma. show that the following languages are not regular  i)         L= {a p   / p is prime}  ii) L= {ww | w  ϵ { a,b}}

16)             Let L = {a, b}, write Regular expression to define language consisting of  string w such that -

i)                  w contains ending with bb.

ii)                w  beginning with 0 and ending with b.

17)           Construct NFA without € - equivalent to the following R. E.

            i)    10+(0+11)0*l

            ii)  (0 + l)* (00 + l l) (0+1)* 

UNIT 3

1)               What is CFG? Explain with suitable example?

2)               What is ambiguity in grammar? Explain with suitable example?

3)               Construct Context Free Grammar for given language

      i)  L={a      n   bm   :  n≠m} 

      ii) L={ a  n   b m   | 2n≤m ≤3n } for n,m>=0

4)               Construct Context Free Grammar for given language

            i)  L={ a n   b m   : n≤ m+3 | n,m≥0 }           

            ii) L= {a n   bn    | n  ≥ 0 }Ụ{ bn an| n ≥ 0}

5)               Construct Context Free Grammar for given language

    i)  L={ a     n   b n   c m   dm   | n≥1 ,m ≥ 1}  

    ii) L={an b  m   c m  d  m   | n ≥ 1 , m ≥ 1}

6)               Construct Context Free Grammar for given language 

            i) L={ww R  | w in (a+b)*}}   

            ii) L={ a    n   b n  c  m   d m   | n  ≥ 0 , m ≥ 0}

7)               Design CFG for the regular language over {a,b} that generates the set of

        i) all string with exactly one a   

        ii) all string at least one a

8)               Design CFG for the regular language over {a,b} that generates the set of

   i) all string with at least 3 a’s.  

   ii) all string contain 3 consecutive a’s.

9)               Explain Derivation Tree and also explain RMD and LMD with example?

10)           Explain Grammar simplification in details?

11)           Convert the following grammar into CNF

 S→Aba, A→aab , B→Ac

12)           Convert the following grammar into CNF

 S→AB, A→aA│ϵ , B→bB│ϵ

13)           Convert the following grammar into CNF

 S→bA│aB, A→bAA│aS│a, B→aBB│bS│b

14)           Convert the following grammar into CNF

 S→AB│aB, A→aab│ϵ , B→bbA

15)           Convert the following grammar into its corresponding GNF

 G= ({A1, A2, A3}, {a,b},P,A) Where productions are

 A1→A2A3

 A2→A3A1│b

 A3→A1A2 │a

16)           Convert the following grammar into its corresponding GNF

 S→ AA/a; A→ SS/b

17)           Convert the following grammar into GNF

           i)S→AB, A→aA│ϵ , B→bB│ϵ             

         ii) S→ABb, A→aA│b

18)           Convert the following grammar into GNF  S→aAS│a, A→SbA│SS│ba 

UNIT 4

1)               Define Push down Automata with its tuples?              

2)               Design a PDA for

 L={WcW R   │ W in (0+1)*}  3)        Design a PDA for 

    L={W| n  a(  w)=n  b(  w)}


4)               Design a PDA for

 L={ a n   bn    │ n≥0}

5)               Design a PDA for

               L={ a  n  b 2  n  │ n≥1}

6)               Design a PDA for

 L={ a 3  b  n  c  n   │ n≥0}

 L={ a n   bm    c n   | m,n≥1 }

 L={ am    bm    c n   | m,n≥1}

               L={a2  n cb  n  | n, m ≥ 1}           

7)              Design a NPDA for      

 L={WW R   │ W in (0+1)*}

8)               Construct PDA equivalent to following grammar

 S→aaA A→aS/bS/a

 S→aSbb/aab

9)               Using pumping lemma, Show that

 L={a i   bj    ci   d j    | i,j ≥ 1} is not CFL

 L={a P   | P is Prime} is not CFL

                    L={ a n    bj   :  n=j 2  }  is not CFL

 L={a i  b  j  c k    | i<j<k } is not CFL

10)           Explain Enumeration of properties of CFL     

11)           Explain Context Sensitive Language with example    

12)           Generate a Context Sensitive Grammar for

 L= {a n   b n   cn    |n>=1} and Verify w=aaabbbccc

13)           Define Linear Bounded Automata?

14)           Find the grammar generating the set accepted by LBA whose transition table is as follows: q1: Initial State q4: Final State

15)           Show  that  L={W|  n  a(  w)!=n b (  w)}  is  deterministic  context free                           language ( DCFL).

         Give DPDA for it.

16)           Show that there exit some LBA M, for every context sensitive language L such              that L=L(M).

17)           Explain closure properties of DCFL?

UNIT 5

1. Consider  the  Turing  machine  M  described  by  the  transition  table  given below.  Describe the processing of 

i)     011.

ii)    0011. 
iii)   001

 Using IDs. Which of the above strings are accepted by M2 

2.               Design a Turing machine over {0, 1} to accept the language L={0m    1 m   | m>0}

3.               Design  a  Turing  machine  which  can  compute  a  concatenation  function  over Σ={1} . If a pair of words (w1, w2) is the input, the output has to be wlw2.

4. Design  a  Turing  machine  to  compute  m-n  where  m  and  n  are  positive      integers  and m> n.

5. Design à Turing machine for L={ww r   | w  (a, b)*}.

6. Design à Turing machine for L={ww  | w  (0, 1)*}.

7. Explain  a  TM  with  two  way  infinite  tape  and  write  a  relation  with  one  way          infinite tape.

8. Design  a  Turing  machine  for  equal  number of  0 's  &  equal  number  of 1's over 
{0 , 1}.

 9.          Design a TM for L={a n   b n   c n   | n>=0}.  10.       Design a TM for 
            L={a n  b  n  a  n   | n>=0}.

11.            Design  a  Turing  machine  for  L  (0 n   1 n  |   n>=1)  and  verity  the  string                 i)0011 

            ii)011.

12.            Explain in brief:

i)Multi Track TM 

ii) Multi Tape TM 

iii) Multidimensional TM

13.            Design  a  Turing  machine  that  computes  the  proper  subtraction  of  two  unary  numbers

Proper subtraction (A, B) =A-B  if A>B

=  0     if A<B

14.            Write a note on Church's hypothesis and Counter Machines.

15.            Design a TM that computes the function f(m,n)=m+n.

16.            Design a Turing machine to compute the multiplication of two numbers

17.            Give recursive definitions of :(i)n+m (ii)n-m (iii)nm.

18.            Design a Turing machine for f(x, y) = x-y   if  x >= y

=  0      if x < y 

 UNIT-VI

1.        Show that the function f(x, y) = x+y is primitive recursive.

2.    Explain PCP and MPCP Describe whether following (A, B) parts have a  solution  are  not.  If  yes  give  a  solution.  If  no,  why?  A=(ab,  b,  b}  B={abb,  ba,  bb}

3.    Explain  Universal  Turing  machine  with  example?  What  are  the  modification      made to the basic model of Turing machine.

4.               Show that the following function is primitive recursive:

 F(y)= 4y       if y is perfect square

=  4y+1   otherwise

5.               Prove the following 

 i)          The complement of a recursive language is recursive.  ii)         The union of two recursive language is recursive 

6.        Describe in brief what is halting problem of TM.

7.    Decide  whether  the  following  pair  (A, B)   have  PCP  solution  or  not?  If  yes  give a solution if no why?

 i)          A ={1, 10111, 10}       B={111, 10, 0}  

ii)          A ={10, 011,101}     B={101, 11, 011}

8.               Ackerman's function defined by

         A(0, y) = y+1

         A(x+1,0)=A(x, 1)

       A(x+1, y+1)=A(x, A(x+1, y))          Find A(1,1), A(1,2), A(2.1)

9.               What  is  MPCP?  Determine  whether  the  following ( A  B)  Pairs  have  a  MPCP  solution or not? If yes, give a solution if no why?

i) A=(b, bab         3  , ba); B=(b    3   ,ba,a)  ii) A=(1 2   ,10 2  ,1  3  ) ; B=(1 3  ,0²1,1²)  

10.            Show that the following functions are recursive.

i)                n+m      ii) nm

11.            Explain the   properties  of  Recursive and   Recursively  enumerable  languages  in detail.     

12. Prove that for any total recursive σ there exists an x  0  such that fx  0(  x)=fσ (x  0)   for all x

13) Let Σ={0,1} let X and Y be lists of three strings each defined as follows:


 

 List X

 List Y

 i

 w  i

 xi

 1

 1

 111

 2

 10111

 10

 3

 10

 0








 Determine whether pair(X,Y) has a solution or not.